Indian Statistical Institute, Bangalore B. Math. First Year, First Semester Analysis I

Final Examination Maximum marks: 100 Date : Nov. 7, 2016 Time: 3 hours

Here the set of natural numbers $\{1, 2, 3, \ldots\}$ is denoted by \mathbb{N} and the set of real numbers is denoted by \mathbb{R} .

- 1. Let K be the set of functions from $\{0,1\}$ to N. Show that K is countable. Let M be the set of functions from N to N. Show that M is uncountable. [15]
- 2. Let $\{v_n\}_{n\geq 1}$ be the sequence defined by $v_1 = 1$ and $v_{n+1} = \sqrt{v_n^2 + \frac{1}{2^n}}$ for $n \geq 1$. Show that $\lim_{n\to\infty} v_n$ exists. Find the limit. [15]
- 3. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions. Show that $h : \mathbb{R} \to \mathbb{R}$ defined by $h(x) = \min\{f(x), g(x)\}$ is a continuous function. Show that the converse is not true. Show that if f, g are differentiable at c and $f(c) \neq g(c)$ then h is differentiable at c. [15]
- 4. Let $m: (0,1) \to \mathbb{R}$ be a continuous function. Suppose $\{m(x) : x \in \mathbb{R}\} \subseteq \mathbb{N}$. Show that m is a constant function. [15]
- 5. Suppose $k \in \mathbb{N}$ and B_1, B_2, \ldots, B_k are strictly positive real numbers. Show that
 - (i) $\lim_{n \to \infty} k^{\frac{1}{n}} = 1;$
 - (ii) $\lim_{n \to \infty} (B_1^n + B_2^n + \dots + B_k^n)^{\frac{1}{n}} = B$ where $B = \max\{B_j : 1 \le j \le k\}.$ [15]
- 6. Let a, b be real numbers with a < b, and let $f : [a, b] \to \mathbb{R}$ be a continuous function. Suppose f is differentiable on (a, b) and $f'(x) \neq 0$ for every $x \in (a, b)$. (i) Show that f is one to one; (ii) Show that either f'(x) > 0 for all $x \in (a, b)$ or f'(x) < 0 for all $x \in (a, b)$. [15]
- 7. State and prove Taylor's theorem for real valued functions on open subintervals of \mathbb{R} . [15]